THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics

MATH 2055 Tutorial 4 (Oct 7)
Ng Wing Kit
(First Three Questions/Solutions)

1. Write down the negations of the following statements.
(a) $\forall \epsilon>0, \exists N$ such that $\forall n>N,\left|x_{n}-x\right|<\epsilon$

Solution: $\exists \epsilon>0$, such that $\forall N_{0}, \exists n>N_{0},\left|x_{n}-x\right|>\epsilon$
(Typo here: ' $>$ ' should be changed to ' \geq '.)

Explanation of Ng Wing-Kit's Solution

First we introduce a more systematic way of writing down logical propositions.

'bracketed way of writing'
(The following way of rewriting the statement in question 1(a)
what the 'scope' of each 'quantifier' is.)
(Notations: $\mathbb{R}=$ the set of all 'positive real numbers' $\mathbb{N}=$ the set of all natural numbers, i.e. $0,1,2,3, \cdots)$. $\forall \epsilon \in \mathbb{R}_{+}\left(\exists N \in \mathbb{N}\left(\forall n \in \mathbb{N}\left(n>N \Longrightarrow\left\|x_{n}-x\right\|<\epsilon\right)\right)\right)$.

Next, the question 1 (a) asks us to negate the statement (\star), which is done in the box below.
Negating the above we get 'by interchanging each ' \forall ' with ' \exists ' the following statement:
$\exists \epsilon \in \mathbb{R}_{+}\left(\forall N \in \mathbb{N}\left(\exists n \in \mathbb{N}\left(n>N\right.\right.\right.$ and $\left.\left.\left.\sim\left(\left|x_{n}-x\right|<\epsilon\right)\right)\right)\right)$.
\Longleftrightarrow
$\exists \epsilon \in \mathbb{R}_{+}\left(\forall N \in \mathbb{N}\left(\exists n \in \mathbb{N}\left(n>N\right.\right.\right.$ and $\left.\left.\left.\left|x_{n}-x\right| \geq \epsilon\right)\right)\right)$.
Remarks:

- In Ng Wing-Kit's solution, he used the notation N_{0} instead of N in order to emphasize the fact that the ' n is greater than 'this' N_{0} '.
- When we negate expressions like ' $\exists \epsilon \in \mathbb{R}_{+}$', we don’t negate the phrase ' $\in \mathbb{R}_{+}$', I think this is related to the idea of 'local' versus 'global' variables in programming languages.

[^0](b) $\exists N$, such that $\forall n>N, \forall \epsilon>0,\left|x_{n}-x\right|<\epsilon$

Solution: $\forall N_{0}, \exists n>N_{0}, \exists \epsilon>0,\left|x_{n}-x\right|>\epsilon$
In the above line, ' $>$ ' should be changed to ${ }^{\prime} \geq$ '.
(c) $\forall M, \exists N$, such that $\forall n>N,\left|x_{n}-x\right|>M$

Solution: $\exists M, \forall N_{0}, \exists n>N_{0},\left|x_{n}-x\right|<M$
In the above line, ' $<$ ' should be changed to ' \leq '.
2. For a pair of positive numbers a and b, define sequences a_{n} and b_{n} respectively as ('as' should be changed to 'by')

$$
\begin{array}{cl}
a_{1}=a, & b_{1}=b \\
a_{n+1}=\frac{a_{n}+b_{n}}{2} & b_{n+1}=\sqrt{a_{n} b_{n}}
\end{array}
$$

Prove that $a_{n} \geq a_{n+1} \geq b_{n+1} \geq b_{n}$ for $n \geq 2$, and (that) they have the same limit.

Solution:

$\forall \alpha, \beta \in \mathbb{R}_{+}$, (which means the set $(0, \infty)!$)

$$
\begin{equation*}
(\sqrt{\alpha}+\sqrt{\beta})^{2} \geq 0 \Longrightarrow(\alpha+\beta) / 2 \geq \sqrt{\alpha \beta} \tag{1}
\end{equation*}
$$

The first part of the above line should be corrected to $(\sqrt{\alpha}-\sqrt{\beta})^{2} \geq 0$, which gives after squaring the following:
$\alpha-2 \sqrt{\alpha} \sqrt{\beta}+\beta \geq 0$, which is just inequality (1).
$\therefore \forall n \geq 2, a_{n} \geq b_{n}$
$b_{n+1}-b_{n}=\sqrt{a_{n} b_{n}}-b_{n}=\frac{b_{n}\left(a_{n}-b_{n}\right)}{\sqrt{a_{n} b_{n}}+b_{n}} \geq 0$
Question. Can you figure out why the above line is correct?
$a_{n}-a_{n+1}=a_{n}-\left(\frac{a_{n}+b_{n}}{2}\right)=\frac{a_{n}-b_{n}}{2} \geq 0$,
therefore starting from $n=2$, the sequence $\left(a_{n}\right)$ is decreasing and bounded below by b_{2}.
Also, starting from $n=2$, the sequence (b_{n}) is increasing and bounded above by a_{2} therefore (a_{n}) and (b_{n}) are both convergent sequences.
Next, because (i) $a_{n+1}=\frac{a_{n}+b_{n}}{2}$, and (ii) $\left(a_{n}\right)$ and (b_{n}) are both convergent sequences,
we have $\lim _{n \rightarrow \infty} a_{n}=\frac{\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}}{2}$
$\Longrightarrow \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.
(The remaining questions as well as solutions will be uploaded next!)

[^0]: ${ }^{1}$ Or you can write the above in a way that resembles computer codes, viz.
 Let ϵ denote positive real number; N denote natural number; n denote natural number.
 $\forall \epsilon$ ($\exists N$ ($\forall n($ $\left.\left.n>N \Longrightarrow\left|x_{n}-x\right|<\epsilon\right)\right)$).
 Remark: In computer languages like visual basic for applications (VBA), statements such as "Let N be nat. no." is written as "Dim N As Integer".

